在教学过程中难免会遇到困难,所以课后及时写好教学反思很重要,大家在进行了教学反思的书写后,可以让自己的教学过程更顺利,品读360小编今天就为您带来了分数除法2教学反思5篇,相信一定会对你有所帮助。
分数除法2教学反思篇1
有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式,我从现实中的分数乘法问题和找一个数的倒数引入,帮助孩子们复习前知,当学生体会到乘除法之间的互逆关系后,由学生提出一个生活中的实际问题,引出分数除法计算的必要性,为后续的学习架好了阶梯。
本课如果仅仅关注学生是否会算了,那是不够的,在设计中,还应有另类关注。如:学生们对算理理解了吗?他们的思维是否得到了实质上的提升?他们的学习方法是否得到增进?他们是否有学习的积极态度?等等。因此,在本课教学目标的制定中,我的着眼点是不仅使学生会算,更是通过对意义的理解,让学生们深刻认识这样算的道理,突出“过程性目标”。让学生经历涂一涂、画一画、算一算、说一说的过程,在探究的过程中,让孩子们形成一种“知其然更要知其所以然”的学习态度,获取一种学习的能力,为学生的可持续发展打基础。教学中,我关注学生经历发现数学知识的过程,给学生提供动手的机会,充分借助图形语言,将抽象变直观,帮助学生体会一个分数除以整数的意义,以及“除以一个整数(零除外)等于乘这个整数的倒数”方法的合理性。
接着变换探索的角度,呈现一组算式,在运算、比较的过程中再次使学生验证操作活动中发现的规律。给学生表达学习过程中体验和感悟的空间,如:谁来说一说这种算法是怎样的?你的想法是怎样的?学生在自主表达的过程中逐步积累原始体验,再通过教师的适度点拨,提升学生的数学思维。
分数除法2教学反思篇2
分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:
1.以解决问题入手,感受分数的价值。
从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的'意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。
2.分数意义的拓展与除法之间关系的理解同步。
当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。
反思这节课,在这一过程中,我在教学之前认为分数与除法的关系很简单,而在实际教学时发现并不是一个简单的问题。因此我把重点放在例2上:3÷4=()(块)的探究上。学生在理解的时候,还真的很难得到3÷4=()(块),开始都猜想是,然后通过动手小组去操作,经历验证猜想的过程中,学生汇报中出现了是1/4,因为他们认为是把3饼看作单位“1”平均分成4份。每人就得了1/4……说明学生在操作中在思考了,同时也暴露出了学生在分数意义的理解上出了问题,问题在哪里呢?出在把谁看作单位“1”上,问题在对分数意义的理解上,这是难点。学生认为简单,实际上不简单,因此我们的教学必须重视学生的说理和交流。把重点放在3÷4=()(块)上,我借助的是学生的动手操作,采取让学生之间的互相交流和辩论解决了学生认识上的难点。把重点放在3÷4=()(块)上,需要注意的是:在指导过程中,不能讲得太多,讲得过多,学生会越来越不清楚。
从分数与除法的关系这个内容的教学我发现:学生的例子太少,没有说服力,为了学生今后学习中遇到问题上该如何解决,我们必须在常规的教学中去渗透数学思想方法,授人以 “渔”。于是教学中,在学生得到了3÷4=()(块)后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。根据学生不同的认知情况,安排了适当的模仿练习,感性体验数学活动,促进学生对结果的深层次的理解。
分数除法2教学反思篇3
六年级上册第三单元“分数除法的应用”的教学是本册的一个教学重点和难点。很多老师都深感在这部分的教学内容较难,教学效果不佳。自己通过在本段时间的教学和反思,自认为找到了一些基本的“小窍门”,和大家交流一下。
一,加强前后知识之间的联系,实现知识的正迁移。
要想分数除法学生学的顺利,在学习分数乘法时一定要做好铺垫。
1.一个数乘分数的意义一定要理解好,让学生深刻地认识到:求一个数的几分之几是多少用乘法计算。
2.能快速地根据题中的关键句判断出谁是单位“ 1” 。比如教学分数乘法应用题时,首先要注意引导学生看出是哪两个量在比较,谁是单位“ 1”?怎么确定的?这可以通过题意画图来说明。通过学生实践,让学生归纳出快速找单位“ 1”的方法:是“谁”的几分之几,相当于“谁”的几分之几,比“谁”多(少)几分之几,“谁”就是单位“ 1” 。最简单的方法是:分率前面的量就是单位“ 1” 。
3.学生要熟练掌握画线段图的方法。比如要先画单位“ 1”(因为单位“ 1”是比较的标准,所以要先画),再画比较量。如果是“部分”与“整体”相比较的关系,可以画一条线段表示,如果是“两个不同的量”相比较,就要用两条线段表示。
4.能根据线段图或关键句快速写出题中的“等量关系式”。其中根据应用题中的“关键句”进行分析比较快捷。
例:“柳树是杨树的”等量关系式:杨树×=柳树
“柳树比杨树多”等量关系式:杨树+杨树×=柳树或者杨树×(1+)=柳树
这样学生在学习用方程解决分数除法应用题找等量关系式就轻松多了。
二,教学分数除法应用题的时候要复习到位,唤醒学生已有的知识经验。
比如教学第三单元分数除法“解决问题”例4的时候,就要复习一下学生学习第一单元分数乘法“解决问题”例8的知识,如从关键句中找单位“1”、说出等量关系式等。教学分数除法解决问题例5时,就要对应复习第一单元乘法解决问题例9的知识。一节课只有事先的工作做得好,才能达到事半功倍的效果。
三,在教师的引导下提高学生分析题意的能力。
刚开始学习的时候,老师常常都引导学生根据具体的线段图来找分数除法中的等量关系式,以达到“数形结合”的目的,想法是好的,但效果却不尽人意,让学生每道题都画线段图也不现实,时间也不允许。所以,在学生掌握了画线段图分析数量关系后,我就让学生扔掉“线段图”这根拐棍,引导学生从关键句的字面上来分析、理解,从而发现找“等量关系式”的快捷方法。如:柳树比杨树多。引导学生分析:①谁与谁相比较?(柳树与杨树相比较)②谁是单位“1”?(杨树)③多是多“谁”的?(多杨树的)④到底多多少,具体的量怎么算?(杨树×)⑤这句话的意思就是:柳树比杨树多了杨树的。所以等量关系式应该是怎么样的?(杨树+杨树× =柳树)
当然,还有一种等量关系式:杨树×(1+)=柳树可由以下几个问题入手:①柳树比杨树多,就是比单位“1”多,柳树应该是杨树的几分之几?(1+ =)②即柳树的棵树=杨树的,所以等量关系式应该是怎么样的?③根据这个等量关系式,想想用算术方法应该怎么列式?为什么?柳
...