完成教学反思能够提升我们的教学科研意识,教师要通过教学反思来快速提升我们的教学能力,以下是品读360小编精心为您推荐的根的性质教学反思优秀6篇,供大家参考。
根的性质教学反思篇1
一、创设故事情境,鼓励大胆猜测。
牛顿说:“没有大胆的猜想,就不会有伟大的发现。”猜想是一个多向思维的心理过程,是培养创新萌芽的好办法。由此,在课伊始,利用喜闻乐见的《西游记》中的人物,创设故事情境,引导学生猜测揣摩“孙悟空会对沙和尚说些什么”,学生的思维被激发,在教师的诱导下,学生自觉主动地联系旧知,运用多种方法来进行验证猜测。这样,学生从中学到的不仅仅是知识,而且更重要的是学会获取新知的方式和途径,以及如何运用已有知识解决新问题的能力,使学生体验到创新、成功所带来的快乐。
二、通过观察比较,激励自主探索。
波利指出:“学习任何新知的最佳途径是由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。”探索是学习数学的生命线。纵观本课,猜想的提出,验证方法的得出,都是在学生个体的主动参与、合作探究的结果;教师所起的作用只是相机诱导。如:在验证猜测时,学生以小组为单位讨论验证方法,并通过量一量、折一折、叠一叠等多种方法证明自己所猜测的“一样长”是可靠的,让不同层次的学生亲历观察、思考、操作、讨论、分析、推理等活动,从而推出“小数的性质”。这样,学生在探究过程中不但经历了找规律、验证规律、应用规律的知识过程,而且获得丰富的情感体验,培养了学生的探索精神和创新能力。
根的性质教学反思篇2
本周上了一节数学课《分数基本性质》。针对课前的精心准备、课堂教学和课后的自我反思,收益很大。特反思如下。
一、复习旧知,横跨温旧引新的桥梁。
在备课时,我就深知分数基本性质和商不变的规律有着密切的联系。所以在上课伊始,我就让学生复习商不变的规律,在课件中展示,并由学生齐读。为了更好的达到温习旧知的目的,我又设计了两道习题,学生在此基础上加深了商不变的规律的印象,为引新起到了很好地铺垫和桥梁的作用。
二、创设情境,激发学生兴趣。
本节课创设了一个故事情境:阿凡提在一次施行途中,遇到了一件事。一父亲把土地分给三个儿子。大儿子分到田地的1/3,二儿子分到了田地的2/6,三儿子分到了田地的3/9。大儿子和二儿子嫌少,同父亲争执了起来。阿凡提听后大笑,说了几句话,他们马上停止了争执。随后问:“阿凡提大笑?他说了些什么?” 引生猜测。学生在新奇有趣的故事情境中充满了好奇心,很快将思维转到比较1/3, 2/6, 3/9的大小上来。教师创设悬念:学完了本节课,你就知道了。学生抱着解决问题的态度学习新知识,收到了很好的效果。
三、手脑并用,在实践中深入感知分数。
教师让学生用一个长方形纸,对折再对折,即平均分成4份,给其中的3份涂色,并用分数表示出来。学生在动手的同时也在动脑,得出分数3/4,因势利导,在两次对折的基础上再对折,那么阴影部分的面积是多少?(6/8)再次对折呢?(12/16)……挥手一指:长方形的纸有没有变化?(没有)阴影部分的面积有没有变化?(没有)那么得到了什么结论?学生很容易得出:3/4=6/8=12/16,引导学生观察分子、分母的变化,经过总结得出分子和分母同时扩大(或缩小)相同的倍数,分数的大小不变。学生对此进行巩固后,再引导学生说出:0除外。在此过程中,学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
四、巩固练习,围绕中心。
在设计练习的过程中,联系生活实际,我设计了判断题、填空题等,紧紧围绕着教学目标,采取多种形式呈现,学生在此过程中兴趣盎然,在快乐的氛围中巩固了新知,起到了加深理解的作用。
五、总结升华,结束本课。
最后,教师问:通过本节课的学习,你学习了哪些知识,有哪些收获?在学生回答的过程中师生进行补充,学生更加深刻地认识了分数的基本性质,为今后的学习应用打下坚实的基础。
根的性质教学反思篇3
在教学活动中,我有以下活动觉得比较好的:
建立知识结构,进行新课的引入和知识的迁移.上课伊始,我书写了等式(方程)一章的部分知识结构,并且有由等式的有关概念到不等式的有关概念的类比线路图,从而引入课题,开始检查前置学习的情况.这样处理,学生对这个知识内容的整体把握就能够高屋建瓴,数学学习的能力意识就能够形成。
前置学习检查的任务明确.数学教学中很为重要的新知识引入在课堂之前的前置学习完成,为此,新知识的形成过程老师就没有办法把握了,这就要求数学教师很好地在前置学习检查方面动脑筋,在“不等式的性质”这堂课上,由同学们交流检查前置学习的情况,提出三条交流任务:不等式的性质是什么?不等式的性质是怎么研究得到的?不等式的性质与等式的性质有什么区别和联系?学生的交流和讨论就有了明确的方向,后面就有了学生很好的回报:性质的回答情况与以往一样比较到位,更有同学回答了不等式的性质是由等式的性质联想得到的,有同学回答了不等式的性质是我们通过由特殊到一般研究得到的(学案中安排了由具体例子到一般规律的总结),在与等式性质区别和比较之后,学生得出“在不等式两边同时乘以或除以一个数时一定要考虑这个数是正数还是负数”这样的注意点.因此学生前置学习是富有成效的,前置学习检查也是前置学习的补充和完善.
课堂设问、提问精心研究.在利用不等式的性质进行不等式的变形时(问题是以填空不等号的形式拟题的),提问:“各小题的结果是什么?怎样由已知的不等式变形得到的?理论依据是什么”,这样设问便于学生研究,便于学生回答;提升学习内容,问题有难度,思考有深度,在学生回答五道判断题对错后,连续追问,有问为什么的,有问反例是什么的,有问成立的条件是什么的,有问怎样改变结论使命题成立,怎样改变条件试命题成立.提问学生回答问题形式多样,多数情况,学生举手回答,还有依座次回答,点学号回答,同学推荐回答等等,全班学生整堂课处于积极的参与状态.
课堂内容的处理详略得当.利用性质进行不等式的变形是性质的理解和掌握,难度不大,学生口答一挥而就;分类讨论虽是难题,三种情况一经点破,旋即解决;提升判断实是难点,反复讨论,多角度思考,多方位研究,一题多变化,用足力气;用不等式的性质解不等式,变形后的形式要明白、怎样变形要清楚、变形依据要对号、书写格式要规范,同时这又是后面解一元一次不等式的预演,移项法则由此产生,所以,安排了例题老师示范、安排了学生上黑板板演、安排了学生在上面点评.本课全部完成了预设的教学任务,用了八分钟时间进行了很充分的小结.
根的性质教学反思篇4
一、设计思路:
由于学生刚刚升入初中,对方程的思想还有一个适应过程。以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程。象x+3=5、3x=-1等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?所以本课利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣和求知的欲望,又明确了本节课的教学目的。
在直观情境中,按“形象感受——抽象概括”的方式教学等式的性质。用天平呈现的直观情境形象地表示等式两边发生的变化及结果,有利于学生的直观感受。又在学生观察、分析等式变化的基础上及时抽象、概括出等式的性质,使学生进一步积累
...