连除法教学反思7篇

时间:2023-02-06 作者:couple 教学文档

只有认真思考写出来的教学反思才是对自己能力提升有帮助的,作为一名老师,我们一定要习惯性地撰写教学反思,以下是品读360小编精心为您推荐的连除法教学反思7篇,供大家参考。

连除法教学反思7篇

连除法教学反思篇1

本节课教学了有余数的除法,这节课是表内除法的延伸,教学中我主要让学生在动手操作中感知余数,根据二年级学生的年龄特点,通过直观性的教具展示,学具操作,自我探究等形式,使学生积极主动参与学习,通过自己的努力发现问题,解决问题,构建新的知识体系,给学生以成就感。恰如其分的体现新课改的教学理念,同时课堂中培养学生各方面的能力,整个课多数是让学生在动手中认识余数,得出结论。

为了突破本节课教学的重难点,我主要采取了以下三个措施:

1、借助直观操作促进学生对新知的理解。

教学中,对余数概念的理解、对有余数的除法含义的理解,都是借助直观操作来进行的,由直观操作到符号表征,使学生从多方面、多角度理解所学的知识,并建立操作过程、语言表达和符号表征之间的关系,实现学生对数学概念的真正理解。

2、通过对比帮助学生理解有余数除法的含义。

首先是平均分物过程的对比,通过“将一些草莓,每2个一份,可以怎么分”,帮助学生感受平均分物的过程中有恰好分完没有剩余和平均分后还有剩余两种情况,在对比中拓展学生对除法的认识,并更好地理解余数的含义、有余数的除法的含义。其次是有余数的除法和表内除法的横式的对比,通过结合操作过程,使学生在对比中理解有余数的除法的横式中各部分的名称及每个数的含义。通过这样的对比,不仅可以唤起学生已有的知识经验,加深学生对有余数除法的理解,还可以使学生感受到知识之间的联系,为构建合理的知识结构网络提供支撑点,同时,还能培养学生分析、比较、归纳的能力。

3、结合相关的例题和习题,尽可能地给学生提供机会。

让学生经历从现实生活或具体情境中发现并抽象出数学问题的.过程,以此为学生积累发现问题、提出问题的经验,培养学生的问题意识以及对数学问题的敏感性,体现数学是从生活中来,再回到生活中去的基本理念,加强数学与生活的密切联系。这节课在实际教学的过程中,还存在着不足。如:通过对小学生学情分析的了解,我感觉在教学余数与有余数除法的意义这一环节上不够扎实,还应让学生多摆几次小棒,来感知余数。在学生动手操作后,没有留给学生充分交流、表达的机会。因此,在今后的教学中要多让学生用自己的语言来描述自己的想法及动手操作的流程,切实提高学生的动手操作水平和思维表达能力。

本节课的教学我觉得充分体现学生的主体地位,师生合作很好,到后边由于时间原因,导致自己手忙脚乱,有点慌,学生也有些急。不过整体来看课堂教学效果还是比较好。学生也能认识有余数的除法,理解此类算式的含义,能认识余数,理解有余数除法的含义。

连除法教学反思篇2

今天我讲了:除数是两位数的除法,感觉教学效果不太好,反思教学过程,感悟颇多。

早就听有经验的老师说过,这堂课不太好上,学生们接受的要慢一些,今天看来确实有一定的难度,本来教学设计就有点生硬、过程无趣,学生迟迟找不到感觉和好的方法,只有一步一步慢慢引导。

除数是两位数的除法,是小学生学习整数除法的最后阶段,教学重点是确定商的书写位置,除的顺序及试商的方法,帮助学生解决笔算的算理;难点就是试商。

课上我先让学生回忆除数是一位数除法的计算过程,孩子们能够说出要先从最高位开始除起,最高位不够除,就要看前两位,除到哪一位就把商写在哪一位。

在学习除数是两位数的除法的笔算时,学生已经有了口算的基础,在试商时,学生按老师要求先把想的内容写下来,例如:24560=? 想:604=240,240最接近245,所以商试4。再例如:18929=?想:把29看成30的话,306=180,180最接近189,那么商试6。接着还需理解两位数除法中,前两位不够除时,看前三位,商写在个位;而当前两位够除时,就要先除前两位、商写在十位,例如:31815=?就是这样。通过多次巩固商书写的位置和除的顺序的基本问题学生基本解决。之后着重解决试商的问题。教材中安排了四组例题,分层次、分阶段分化了重点,分散了难点。例1主要解决试商、商的书写位置等问题;通过例2的教学使学生学会用四舍五入法把除数看作整十数来试商。例3的教学要使学生认识到要根据具体的情况采用不同的方法来试商。例4教学商是两位数的除法。 学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商时,在试商过程中,一般都要调商,往往要经过多次调试方能求出商数来。尽管教学时总结出了用四舍时,因把除数看小了,初商容易偏大,试商时可比原来想的商小1,而五入时,因把除数看大了,初商容易偏小,试商时可比原想的商大1。而学生在具体的计算中,还是感到很困难,造成了试商速度慢。

课上,特别针对试商、调商进行了大量练习,尤其是对于除数是24、25、26等的题进行了强调,例如:19526=?把26想成 25,258=200,所以商试7。之后巩固记忆254=100、255=125、256=150、257=175,258=200等。

课后,通过学生的作业,针对出现的问题,我又进行了针对性的练习。另外,在做完题后,让学生加上了验算,使其能够自我验证,自我检查,反而出错的几率小了很多。然后还让学生每天花上几分钟进行口算练习,为笔算打好基础。

总之,在除数是两位数除法的试商教学中,四舍五入法、口算法、同头试商法和折半商五法可视其情况挑选应用,可以互相弥补,相得益彰,得到最佳教学效果,提高学生计算的正确率和速度。

连除法教学反思篇3

本节课我在确定教学目标时注重整体性。回忆算理算法,熟练技能;沟通知识间的内在联系,重新建构知识网络;通过问题解决,训练学生多向思维,培养学生合作意识和情感价值观。把学生的终身可持续发展作为数学的根本目的。

“加强口算、淡定笔算、重视估算、注重算法多样化”这是计算教改的方向。课标指出“应让学生在具体运算和解决简单实际问题的过程中体会乘与除的互逆关系。”因此本课在设计过程中没有把笔算的方法、技能作为复习的重点,而是让学生“体会、运用”乘除法的关系作为一项重要的教学目标贯穿在全课之中。通过小红、小亮、小明不同的计算结果的批改及根据小亮的正确算式1998÷54=37口算1999÷54=()……()等,让学生自觉运用乘除法之间的关系进行估算、验算、灵活解决实际问题,这样不仅使学生的计算能力有了较大的提高,而且学生思维的灵活性、创造性得到了良好培养。

数学思想方法是指在认识或处理各种数学或者非数学现象的思维过程中,所表现出来的种种数学观念及思维方式。在课堂教学中渗透数学思想方法的教学,使学生掌握基本数学思想和方法不仅使学科学习变得容易,而且对于学生将来从事的工作,随时随地发生作用,使他们受益终生。在本堂课的教学设计中,有机渗透了分类思想(把8个算式按不同的标准进行分类),函数思想(除数不变的情况下如何判断商的大小),极限思想(有没有最大、最小值,如有分别是多少)估计思想(谁的计算结果是正确的,哪一个商最大等)等。通过对各种数学思想方法的渗透教学,使学生真正学会数学的思考。如借助分类思想,使学生很好地把试商方法、估商方法、计算方法、乘除互逆关系有机地整合起来。

数学源于生活,应用于生活。我在课堂上努力使学生身临其境,体验生活、感悟数学。

连除法教学反

...
《连除法教学反思7篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档