教学反思能够通过自身的教学实践,总结出符合自己特点的教学模式,当我们的教学任务结束后一定要及时写好教学反思,品读360小编今天就为您带来了数学倍数与因数教学反思7篇,相信一定会对你有所帮助。
数学倍数与因数教学反思篇1
?因数和倍数》是人教版小学数学五年级下册第二单元的起始课,也是一节重要的数学概念课,所涉及的知识点较多,内容较为抽象,对于学生来说是比较难掌握的内容,在这样的前提下,如何能充分发挥学生的主体作用,让他们自主探索,自己感悟概念的内涵,并灵活地运用“先学后教”的模式,达到课堂的高效,在课堂中我做了以下的尝试。
一、领会意图,做到用教材教。
我觉得作为一名教师,重要的是领会教材的编写意图,灵活的运用教材,让每个细节都能发挥它应有的作用。如教材是利用了一个简单的实物图(2行飞机,每行6架;3行飞机,每行4架)引出了要研究的两个乘法算式“2×6=12,3×4=12”直接给出了“谁是谁的因数,谁是谁的倍数”的概念。这样做目的有二:一是渗透了从乘法算式中找因数倍数的方法,二是利用数与数之间的关系明确的看到因数倍数这种相互依存的关系。
但这样做仍不够开放,我是这样做的:课始并没有出示主题图,直接提出问题:“如果有12架飞机,你可以怎样去排列?”学生除了能想到图中的两种排法还能得到第三种,这样做是用开放的问题做为诱因,使学生得到“2×6=12、3×4=12、1×12=12”三个算式,而这些算式不仅能够清晰地体现因数倍数间的关系,更是后面“如何求一个数的因数”的方法的渗透和引导。看来灵活的运用教材,深放领会意图,才能使教学更为轻松、高效!
二、模式运用,做到灵活自然。
模式是一种思想或是引子,面对不同的课型,我们应该大胆尝试,不断的积累经验,使模式不再是僵化的,机械的。只要是能促进学生能力形成的东西,我们不能因为要运用模式而把它们淡化,反之,应该想方设法,在不知不觉中体现出来。
如本课中例1是“求18的因数有哪些”,例2是“求2的倍数有哪些”教材的设计已经能够体现学生自主探索知识的轨迹,那我们何不通过一句简短的过渡语让学生进入到下面的学习中呢?而没有必要非要设计出两个“自学指导”让学生按步就搬地往下走,而且让学生对比着去感受一个数“因数和倍数”的求法的不同,比先学例1再学例2的方式更容易让学生发现不同,得到方法,加深对知识的理解,同时也更加体现了学生的自主性,这才是模式的真正目的所在。内涵比形式更重要,发现比引导更有效!
数学倍数与因数教学反思篇2
本节课是第二单元的第一课时,第二单元的教学内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。还有要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
今天这节课的教学的倍数和因数是讲述两个数之间的一种相互依存关系,于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。然后我让学生根据情境列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。同时,我还出示了一个除法的算式,让学生来找找倍数和因数的关系,这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
找出一个数的因数要做到不重复和不遗漏,有些学生还不能找全,没有掌握方法,我在今后的教学中还要注意对学困生的辅导。
数学倍数与因数教学反思篇3
教学内容
教科书第70-72页的例题和“试一试”、“想想做做”第1-3题。
教学目标
1、让学生通过操作,利用乘法算式,认识倍数的因数的意义,理解倍数和因数的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数的某些特征。
2、让学生体会一个数的倍数与因数之间相互依存的关系,发展学生的数感,培养学生观察、分析、抽象能力,并在找一个数的倍数和因数的过程中,培养学生思维的有序性。
3、使学生感悟数学知识内在联系的逻辑美,增强学生学习数学的兴趣。
教学重点和难点
重点:
1、理解倍数与因数的意义及相互依存关系。
2、掌握找一个数的倍数和因数的方法。
难点:
1、理解倍数与因数的相互依存关系。
2、找全一个数的所有因数。
教学具准备:小黑板、12个小正方形
教学过程设计
(一)激趣导入
陶老师先来考考大家的语文水平,你能用“()是()的()”这样一句话来表示陶老师和你的关系吗?
人与人之间有这样相互依存的关系,我们的数学中也有这样相互依存的关系,相信通过本节课的学习你会有所发现。
(二)认识倍数和因数
1、出示12个小正方形。
师:数一数,一共有几个小正方形?如果老师请你把这12个同样的小正方形拼成一个长方形,会拼吗?能不能用一条简单的乘法算式表达出来?
2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。
3、根据学生的回答,适时贴出各种不同摆法:
12×1=12
6×2=12
4×3=12
4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)
5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。
6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?
说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的自然数。
7、说一说
(1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
(2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
3、5、18、20、36
(三)探索找一个数因数和倍数的方法。
1、找一个数的因数。
(1)谈话:看来同学们对于倍数和因数已经掌握得不错了。不过刚才陶老师在听的时候发现了一个奥秘,好几个数都是36的因数,你发现了吗?这五个数中那些数是36的因数?
其实要找36的一两个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?
由于这个问题有一点难度,所以陶老师作几点说明:
①思考一下,什么样的数是36的因数?
②可以独立完成,也可以同桌合作完成。
③想一想怎么找不重复不遗漏,如有困难可参照书本第71页。
④写下因数,如果能把怎么找到的方法写在作业纸上更好。
(2)学生找完后交流:你是怎么找的?怎样找不重复不遗漏?
(3)小结:为了不重复不遗漏,我们在寻找一个数的因数时,可以按一定顺序,一组一组地写出36的所有因数。
(4)完成“试一试”,然后集体交流。
2、找一个数的倍数。
(1)谈话:寻找一个数的因数大家掌握得不错,这节课还要研究倍数呢!你能找出3的倍数吗?想一想,什么样的数是3的倍数?
(2)师生共同寻找。
提问:怎么找不重复不遗漏?能全部说完吗?可以怎样表示3的倍数
...