编写教案有助于记录下教学中的亮点和改进点,促进教育经验的积累,教案的适切性可以通过持续的自我反思和专业发展来提高,以下是品读360小编精心为您推荐的二数学上册教案最新5篇,供大家参考。

二数学上册教案篇1
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用__解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.
四、教学目标
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用__解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣.
五、教学重点与难点:
教学重点
1.对圆锥曲线定义的理解
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程
教学难点:
巧用圆锥曲线__解题
六、教学过程设计
?设计思路】
开门见山,提出问题
例题:
(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)线段(d)不存在
(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线
?设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
?学情预设】
估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。
二数学上册教案篇2
【教学内容】
教科书第94页例3及课堂活动第2,4题,练习十八第2~5题。
【教学目标】
1、能运用倍的概念理解求一个数的几倍是多少这一问题的解决方法,进一步加强对倍的认识。
2、能解决求一个数的几倍是多少的问题,培养学生解决问题的能力。
【教具、学具准备】
教具:实物投影仪,乒乓球、羽毛球若干,卡片。
学具:小三角形纸片、小圆片、卡片等。
【教学过程】
一、谈话导入
教师:二(1)班小朋友参加义务植树活动。
请看屏幕:(实物投影仪出示例3图)
教师:你能根据这幅图提出什么数学问题、
学生:一小组和二小组一共植树多少棵、
教师:这个问题你能解决吗、(能)真行!
学生:……
学生:第二小组植树的棵数是第一小组的几倍、
教师:说得真棒!谁能解答吗、
学生:用14÷7=2。
教师:这是上节课我们学习的“求一个数是另一个数的几倍”的问题。
二、自主探索
屏幕出示:第三个小组植了多少棵树、
教师:你能解答吗、请小朋友以4人小组为单位讨论,讨论时可以借助你的学具,代替树苗。
学生活动,教师在教室巡回检查、指导。学生可能用学具来摆:先摆7根小棒,再以7根小棒为1份,摆3份来表示第三个小组植树棵树。也可以用画竖线的方式来表示:7根、7根、7根;也可能凭借前面对“倍”的理解直接说出“第三组植树棵数是3个7棵那么多。”
教师:刚才老师看到小朋友都用自己的办法通过摆一摆、画一画、说一说,理解了这幅图的意思,谁愿意代表你们小组向同学汇报你们讨论的结果、
学生1:我们小组是这样讨论的,先在一个圈里画7根竖线代表7棵树苗,再在右边一个更大的圆圈画3个7根竖线,因为3个7是21,所以第三小组植了21棵。
教师:你们小组能用画图的方法帮助理解题意,真行!老师真为你们感到高兴。
学生2:我们小组用小棒代替树苗,第一排先摆7根,第二排摆7根、7根、7根,数一数,3个7根一共是21根。
教师:太棒了!你们小组同学很善于动手操作,值得大家学习。
学生3:因为第一小组植了7棵树,把7棵看成1份,第三小组植的棵数是第一小组的3倍,就有3份,也就是3个7。
教师:你们现在知道“第一小组的3倍”应怎样计算吗、
学生1:求3个7是多少就是7×3=21(棵)。
学生2:也可以写成3×7=21(棵)。
教师:你们说得都对,求3个7是多少应该用乘法计算,请学生完成书上例3的'方格填数。
三、课堂活动
1、第3题学生分小组,一人出示卡片(小组每人准备4张卡片),另外3人回答。比比看谁说得最准确。一人出完题后交换。
2、第4题学生完成第4题,独立完成后请学生用投影仪展示,并向同学们说说你的想法。
学生1:因为△有4个,○是△的3倍,我就画了4个○表示1份,再画了这样的2份,就有3个4,○就是△的3倍,所以○有12个。
学生2:因为△有4个,○的个数是△的3倍,就是4的3倍,就是3个4是12个,我就画了12个○。
3、练习十八第2~5题
让学生独立完成练习十八的第2,3题,引导学生讨论比较这两题的联系与区别。让学生独立完成,课堂讲评,结合题说一说算式的意义。
四、反思小结
教师:通过这节课的学习,你有什么新的收获、引导学生小结出:“求一个数的几倍是多少”就是“求几个几相加的和是多少”,用乘法计算。
五、教学反思
二数学上册教案篇3
一、教学内容
小学数学(新课标人教版)四年级上册p112—p113第七单元《数学广角》例1、例2
二、设计理念
“数学广角”(第一课时)是义务教育课程实验教科书人教版数学新增设的一个内容,和前面几册教材一样,在本册中也专门安排“数学广角”一单元,向学生渗透一些重要的数学思想方法。
?标准》中指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”本课时主要是通过日常生活中的一些简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。在日常生活中,解决问题的方法学生很容易找到,而且会找到解决问题的不同的策略,本课的关键是让学生理解优化的思想,形成从多种方案中寻找方案的意识,提高学生的解决问题的能力。
三、活动目标:
1、知识目标:
(1)使学生通过简单的实例,初步体会运筹思想在解决实际
...