优秀的教案应当能够培养学生的批判性思维和创新精神,通过教案的制定,教师可以更好地关注学生的学习进展和个性化需求,品读360小编今天就为您带来了鱼的数学教案模板7篇,相信一定会对你有所帮助。
鱼的数学教案篇1
活动目标:
1、在游戏中继续感知分类,认识区别大小。
2、初步积累按事物的某一特征进行摆放的生活经验。
3、培养幼儿比较和判断的能力。
4、引导幼儿积极与材料互动,体验数学活动的乐趣。
5、引发幼儿学习的兴趣。
活动准备:
1、水果筐子、橘子、苹果、梨若干。
2、有去过水果店的经验,水果店录像。
活动过程:
一、情景回忆
1、播放录像,这是什么地方?
2、播放水果分类摆放的特写镜头,水果店里的水果是怎么摆放的?(引导幼儿说出分类摆放的相关经验。)
二、摆放水果
1、今天,我们也来开个水果店,好吗?可是,橘子、梨、苹果这样乱七八糟放在一起能开水果店吗?(引导幼儿说出:橘子、梨、苹果分别放在三个筐子里。)
2、幼儿分放水果,教师观察并引导幼儿边放边说:苹果苹果在一起,梨和梨在一起,橘子橘子在一起。
3、现在,水果店里整齐多了。但是,大苹果和小苹果的价钱是不一样的,而且我今天想买大苹果送给朋友,可是大苹果、小苹果放在一起,我挑起来真是麻烦。那怎么办呢?(引导幼儿说出把同种水果按大小分开放,可播放录像帮助幼儿感知回忆。)
4、请3名幼儿示范将同种水果按大小分类。
5、幼儿按大小分类,最终分成六筐水果。
三、买卖游戏
1、教师当老板,幼儿买水果,一人可以买1——3个水果。
2、说说自己买了几个大或小的什么水果。
活动反思:
整个活动中,教师得到了幼儿的积极配合,让他们大胆地说出自己想说的。幼儿始终有浓厚的兴趣,在不知不觉参加教学活动,教师也达到了教学目标。
鱼的数学教案篇2
学习内容:
人教版小学数学五年级下册第23、24页。
学习目标:
1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。
2.我知道100以内的质数,记住了20以内的质数。
3.我能在自主探究中独立思考,合作探究时畅所欲言。
学习重点:
能理解质数、合数的意义,正确判断一个数是质数还是合数。
学习难点:
用恰当的方法找出100以内的质数;会给自然数分类。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
3.试试身手:第23页做一做。
三、合作探究
1.小组合作,利用课本24页的表格,用恰当的`方法找出100以内的质数,做一个质数表。
2.展示、交流:你们是怎样找出100以内质数的?
3.小组讨论:(1)有没有最大的质数或合数?(2)根据因数的个数,可把非零自然数分成哪几类?
我的想法________________________________
4.我能很快熟记20以内的质数。
5.独立思考:
(1)是不是所有的质数都是奇数?(2)是不是所有的奇数都是质数?
(3)是不是所有的合数都是偶数?(4)是不是所有的偶数都是合数?
6.组内交流。
鱼的数学教案篇3
教材分析:质数和合数,是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。质数和合数是求最大公约数、最小公倍数以约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能较快地看出常见数是质数还是合数。
教学内容:九年义务教育六年制小学教科书第58页、第59页上半页的内容及练习十三中的1~4题。
教学目的:
1、使学生掌握质数和合数的概念,知道它们的联系和区别。
2、能正确判断一个数是质数还是合数。
3、培养学生判断推理能力。
教学重点:掌握质数、合数概念,会判断一个数是质数还是合数。
教学难点:判断一个数是质数还是合数。
教学关键:使学生把握住质数和合数的根本区别在于:质数,只有1和本身二个约数;合数,除了1和本身,还有其它约数。
教具准备:纸片、投影器、投影片等。
教学过程:
一、复习。
师:“我们学过求过一个数的约数,那么每个数的约数的个数又有什么规律呢?这节课我们来探索这个问题。”
师:“谁能说说什么是约数?”
生:“如果数a能被数b(b不等于0)整除,a就叫做b的倍数,b就做a的约数(或a的因数)。
师:“谁又能说说每个数的约数有什么特点?”
生:“一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。”
二、教学新课。
1、教学例1。
教师出示例1(纸片)时说:“请两名学生分别写出左右两排数的约数。”点两名学生上黑板完成例1。
例1 写出下面每个数的所有的约数。
1的约数:1 7的约数:1、7
2的约数:1、2 8的约数:1、2、4、8
3的约数:1、3 9的约数:1、3、9
4的约数:1、2、4 10的约数:1、2、5、10
5的约数:1、5 11的约数:1、11
6的约数:1、2、3、6 12的约数:1、2、3、4、 6、12
师:“谁能根据这些数的约数的个数进行分类?”教师在黑板上板书:
有一个约数的是:(生)1
有两个约数的是:(生)2、3、5、7、11
有两个以上约数的是:(生)4、6、8、9、10、12
请一名学生上黑板进行分类,其余学生在书上完成。
师:“一个数,如果只有1和它本身两个约数,这样的数叫质数(或素数)(张贴质数概念)。例如,2、3、5、7、11都是质数。谁能说说,还有哪些数是质数?”
生:“13、17、19、23……”
师:“质数的个数数得完吗?”
生:“数不完,质数的个数有无数个?”
师:“一个数,如果除了1和它本身还有别的约数,这样的数叫做合数(张贴合数概念)。例如,4、6、8、9、10、12都是合数。谁能说说,还有哪些数是合数?”
生:“4、6、8、100……”
师:“合数的个数数得完吗?”
生:“合数的个数数不完,它的个数有无数个。”
师:“1不是质数,也不是合数(张贴概念)。”
2、教学例2
师:“根据质数和合数的定义,我们可以判断一个数是质数还是合数。请看例题。”
投影:
判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
质数有:(生)17、29、37
合数有:(生)22、35、87
师:“根据质数和合数的定义,质数只有1和它本身两个约数,合数除了1和它本身外,还有别的约数,请某某同学上来找出所有的质数,并把答案填在投影片上。”
学生填完后,师:“请你说说是怎样想的。”
生1:“17、29、37是质数。因为17只有1和17两个约数,29只有1和29两个约数,37只有1和37两个约数。”
师:“请某某同学上来找出所有的合数,并把答案填在投影片上。”学生填完后,
师:“请你说说是怎样想的。”
生2:“22、35、87是合数。因为22除了1和22两个约数外,还有2、11两个约数,35除了1和35两个约数外,还有5、7两个约数,87除了1和87两个约数外,还有3、29两个约数。”
师:“这两位同学回答得很好,老师相信大家都能够判断一个数是质数,还是合数了。下面请同学在书上第59面完成中间的做一做。”
投影:
下面哪些数是质数,哪些是合数?
19 21 43 67
质数:(生)19、43、67
合数:(生) 21
请两名学生在投影片上分别写出答案,并请学生说说怎样想的。
师:“请同学们做一做,20以内的数中,有哪些数是质数。”
学生自己动手制出20以内质数表。
师:“如果给我们一个数,如87,我们怎样知道这些数只有1和它本身两个约数,是个质数呢?”
生:“我们可以用2、3、5、7、9……去除这个数,如果这个数不能被2、3、5、7、9……这些数整除,就说明
...