一个阶段的教学活动结束之后,作为教师一定不能忘记写好相关的教学反思,大家在写教学反思的时候,一定要写出课堂中存在的问题,下面是品读360小编为您分享的圆柱与圆锥的教学反思7篇,感谢您的参阅。
圆柱与圆锥的教学反思篇1
?圆柱与圆锥》单元终于落下帷幕……
我想教过这一单元的老师对它的感觉肯定是“想说爱你不容易”,学生也一定是“恨你在心口难开”。呵呵~~这一切的源头都得归功于本单元的“计算”。
对于本单元的计算,我曾采取了以下策略,以期学生能少“恨”一些:
1、熟记3.14与一些常用数相乘的结果。
2、启动学生的简算意识,教给学生一些计算的技巧。
①对于一些有特殊数据的计算,如计算圆柱体积:2.5×2.5×3.14×8,引导学生利用乘法结合律使计算简便,(2.5×2.5×
8)×3.14=50×3.14=157 ;
② 计算圆锥的体积时,可让学生把乘数中能和1/3约分的先约分,然后再乘:如4×4×3.14×6×1/3,可引导学生把6和1/3先约分,然后再乘,(4×4×2)×3.14=100.48 ;
③对于一般数据的题目,如:3×3×3.14×8,也尽量把3.14以外的数先相乘,最后再和3.14相乘,即(3×3×8)×3.14=72×3.14=226.08,以提高计算正确率。
3、计算量很大的题目,采取“只列式,不计算”。
对于计算繁杂程度高的题目,我通常是采取“只列式不计算”的策略,既可保持学生的兴趣又可节省时间。“银行的工作人员通
常将50枚硬币摞在一起,用纸卷成圆柱形状。(底面直径2.5cm,高9.25cm)你能算出每枚1元硬币的体积大约是多少立方厘米吗?”这题的列式是1.25×1.25×3.14×9.25÷9,如果真让学生计算出结果的话,恐怕既费时又费力。所以我们教师也不要拘泥于算。
4、启动学生的估算意识。
估算可以使学生把正确结果的.范围框定,对于一些有明显错误的计算,容易发现问题。如:1.2×1.2×3.14×6=271.296,估算:1×1×3×6=18,正确的结果应该是在18左右,而现在271.296偏离正确的结果太远了,一定是错误的。正确的结果应该是27.1296。当然,如果真的为学生的兴趣考虑的话,可以使用计算器。但是由于考试的“紧箍咒”,又有几个老师能够如此洒脱与超然呢?
我不能做到绝对的超然,但我也努力了!呵呵
圆柱与圆锥的教学反思篇2
一、注意生活化抽象到数学化,让学生掌握知识的共同特点
1.对于圆柱物体的认识(教材p10),圆锥物体的认识(教材p23),不容忽视,这一环节是生活化的具体表现,再从生活化的物体抽象到数学化的图形,这又是数学化的具体运用,是知识从形象到抽象的过程。
(图略)
2.抽象出具体的图形后,再让学生观察并说说这些图形的共同特点,更好地认识圆柱(或圆锥)的特征。避免知识形成的片面化。
二、注意计算公式的直观推导,让学生掌握知识的形成过程
知识的形成比结果更重要。这也是课程标准的重要理念。
1.圆柱侧面积计算公式的推导
让学生用二张长方形纸和一张正方形纸分别围成一个圆柱体。将围成的圆柱体的其中二个沿着高剪开,另一具斜着剪开。然后展开,让学生知道圆柱的侧面展开,可能得到一个长方形(或正方形,或平行四边形)。
圆柱的侧面展开可以得到一个长方形,这个长方形的长就是圆柱的底面周长,宽就是圆柱的高。
圆柱的侧面展开可以得到一个平行四边形,这个平行四边形的底就是圆柱的底面周长,宽就是圆柱的高。
2.圆柱体积计算公式的推导
(1)圆柱等分可以拼成一个近似的长方形,这个长方体的底面积就是圆柱的底面积,这个长方体的高就是圆柱的高。
因为长方体的体积=底面积高
所以圆柱体的体积=底面积高
(2)圆柱等分可以拼成一个近似的长方形,这个长方体的长就是就是圆柱底面周长的一半(r),这个长方体的宽就是圆柱的底面半径(r),这个长方体的高就是圆柱的高。
因为长方体的体积=长 宽 高
所以圆柱的体积 =r r h=r h
3.圆锥体积计算公式的推导
同底等高的圆柱与圆锥,让学生用水量一量,观察,讨论与交流以下问题。
同底等高,圆柱的体积是圆锥体积的()倍。圆锥体积是圆柱体积的( )。从而得到圆锥体积的计算公式:
因为圆柱体积=底面积高
所以圆锥体积=1/3底面积高
=1/3sh=1/3r h
三、注意用字母表示已知条件,让学生养成良好的解题习惯
这一举动既是培养良好的解题习惯,也是为中学学习奠定良好的基础。教学实践证明,这一举动还可以提高学生的分析能力,也可以为学生选择恰当的计算公式服务,同时又可避免学生对条件丢三落四,真是一举多得。
例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?
已知h=28厘米,d=20厘米,r=10厘米,
s表=dh+r
v柱=r h
四、注意计算公式的书写要求,让学生更好的进行中小衔接
学生升上中学后,不论是数学、物理、化学匀需要书写计算公式。因此作为中、小学衔接,就应该这样做,要求学生带计算公式计算,养成良好习惯,为中学学习奠基。计算中并要求学生保留,既与中学衔接,又减轻学生计算的负担。
例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?
人教版六年级下册数学《圆柱与圆锥》教学反思已知h=28厘米,d=20厘米,r=10厘米,s表=dh+r
=20xx+10
=560+100
=660(平方厘米)
五、注意由面到体的变化,提高学生平面到立体的认识
长方形的小旗是一个平面图形,它旋转后所得到的轨迹是一个圆柱体。三角形小旗也是一个平面图形,它旋转后所得轨迹是一个圆锥体。学生看平面图的数据后会求立体图的体积(或表面积),可以提高学生平面图形到立体图形的认识。
六、注意加强知识的联系转化,提高学生的`空间思维能力
1.圆柱体侧面展开转化成长方形
(1)圆柱的侧面展开得到一个长方形,这个长方形的长是12.56厘米,宽是4厘米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?
(2)圆柱的侧面展开得到一个正方形,这个正方形的边长是6.28分米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?
2.圆柱体转化成长方体
(1)圆柱的半径是2分米,高是5分米,将圆柱等分后拼成一个近似的长方体。表面积增加多少?
(2)圆柱等分拼成近似的长方体,这个长方体的长是12.56厘米,高是4厘米,求原来圆柱的侧面积和体积
(3)圆柱等分拼成近似的长方体,这个长方体的宽是5厘米,高是4厘米,求原来圆柱的侧面积和体积
(4)圆柱等分拼成一个近似的长方体,表面积增加100平方厘米,求原来的侧面积。
3.圆柱体截面情况
(1)圆柱的半径是4分米,高是10分米,将圆柱横切成3段,表面积增加多少?
(2)一根圆柱长是8分米,将圆柱横切成4段,表面积增加30平方分米。求原来圆柱的体积。
(3)圆柱的直径是10厘米,高是6厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加多少?
(4)圆柱的直径是8厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加80平方厘米,原来圆柱的侧面积、表面积分别是多少?体积是多少?
4.圆柱体侧面增加(减少)
(1)一个圆柱的高是10厘米,如果高再增加3厘米。表面积增加18.84平方厘米,求原来圆柱的侧面积、表面积。体积是多少?
(2)一个圆柱的高是10厘米,
...