在当下的社会中,写教案是每位教师都必须掌握的一项技能,在职业生涯中,老师们一定经常制定教案,以下是品读360小编精心为您推荐的初二上数学教案模板7篇,供大家参考。
初二上数学教案篇1
教学目标
1.掌握正方形的定义、性质和判定及它们初步应用.
2.理解正方形与平行四边形、矩形、菱形的内在联系.
3.通过正方形与平行四边形、矩形、菱形的联系的教学来提高学生的逻辑思维能力.
教学重点和难点
重点是正方形的定义及正方形与矩形、菱形的联系;
难点是正方形与矩形、菱形的关系及正方形的性质、判定的灵活运用.
教学过程设计
一、通过知识结构的教学,学习正方形的知识.
1.复习平行四边形、矩形、菱形的定义.
学生边回答,教师边用活动教具演示平行四边形演变成矩形、菱形的过程,并画出它们之间的内在联系图.(画出图4-50(a)中的四边形,平行四边形、矩形、菱形及箭头)
2.类比联想,用运动方式得出正方形的定义.
问:既然矩形、菱形都能由平行四边形运动变化得到,那么正方形呢?
启发学生将小学熟悉的正方形与平行四边形作比较,用教具演示出平行四边形形成正方形的过程,同时归纳出正方形的定义.教师板书定义并画出图4-50中的正方形及箭头①.
3.完善特殊的平行四边形的知识结构.
(1)师生共同分析正方形定义的三个要点:①是平行四边形;②有一个角是直角;③有一组邻边相等.
(2)对比正方形与矩形、菱形的定义,得出它们的联系:
①由正方形定义①,②条件可知正方形是特殊的矩形.(画出图中的箭头②及正方形集合a5和矩形集合a1)
②由正方形定义的①,③条件可知正方形是特殊的菱形.(画出图4-50中的箭头③及菱形集合a2)
③由正方形的定义的所有条件可知,正方形又是特殊的平行四边形.(画出图4-50中的集合a3)
④平行四边形、矩形、菱形、正方形都是特殊的四边形.(画出图4-50(b)中四边形集合a4)
而且从以上过程可知,正方形既是矩形又是菱形.(集合a2与a1的公共部分)
4.从整体知识结构出发,研究正方形的性质和判定.
(1)正方形的性质.
引导学生由正方形与矩形、菱形的关系得知:正方形具有矩形和菱形的一切性质.让学生复习矩形和菱形的性质,从而得到正方形的性质.
①边:四边都相等.(性质定理1)
②角:四个角都是直角.
③对角线:相等、互相垂直平分,每条对角线平分一组对角.(性质定理2)
(2)正方形的判定.
引导学生根据正方形与平行四边形、矩形、菱形之间的关系,总结出正方形的三类判定方法:
①先判定四边形是平行四边形,再判定它是正方形;(图4-50(a)中箭头①)
②先判定四边形是矩形,再判定这个矩形又是菱形;(图4-50(a)中箭头②)
③先判定四边形是菱形,再判定这个菱形又是矩形.(图4-50(a)中箭头③)
(3)巩固练习:判断下列命题是否正确,不是正方形的补充什么条件能让它成为正方形?
①四个角都相等的四边形是正方形;(×)
②四条边都相等的四边形是正方形;(×)
③对角线相等的菱形是正方形;(√)
④对角线互相垂直的矩形是正方形;(√)
⑤对角
初二上数学教案篇2
教学目标
1、知道梯形、等腰梯形、直角梯形的有关概念;能说出并证明等腰梯形的两个性质;等腰梯形同一底上的两个角相等;两条对角线相等。
2、会运用梯形的有关概念和性质进行有关问题的论证和计算。
3、通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想。
教学模式问题解决教学
教学过程
想一想:
什么样的四边形是平行四边形?平行四边形有哪些性质?学生回答后,教师板书以下关系图中的有关部分:
画一画:
画一个梯形,并指出梯形的上、下底,画出梯形的高。
问题教学
问题1:根据刚才的画图,请给梯形下一个定义,并说说梯形与平行四边形的区别和联系。(说明与建议:(l)让学生自己给梯形下定义,有助于训练学生观察、概括和语言表述的能力。如果学生定义时,遗漏了"另一组对边不平行"教师可举及例(2)对梯形的定义,还可以让学生讨论以下问题:一组对边平行且这组对边不相等的四边形是梯形吗?为什么?教师可用反证法的思想说理。然后,板书完成"想一想"中的关系图,并结合图表指出:梯形和平行四边形的区别和联系。(3)梯形的高是指夹在两底间的公垂线段,在计算面积时高即为上下两底(平行线)间的距离,也就是夹在两底间的公垂线段的长度。画高时可以从上底任一点向下底作垂线段,一般常从上底的两端向下底作垂线段可方便地构造直角三角形,便于计算。)
问题2:如图4.9-1,在(1)中:四边形abcd的ad∥bc,abcd,且cd⊥bc;在(2)中,四边形abcd的ad∥bc,abcd,且ab=cd。请你给这两种四边形命名。(说明与建议:学生说出图(l)的四边形是直角梯形,图(2)是等腰梯形,通常不会有困难;教师应进一步引导学生讨论,在图(1)中cd⊥bc,那么cd⊥ad吗?(cd⊥ad,且指出:cd就是直角梯形的高)当cd⊥bc时,另一腰ab可以垂直bc吗?为什么?(若ab⊥bc,那么四边形abcd就成为矩形了,不再是梯形。)在图(2)中,上底ad与下底bc能相等吗?(不能,否则四边形abcd成为平行四边形,不再是梯形。)
练一练:课本例1后练习第l、2题。
问题3:观察图4.9-2中的等腰梯形abcd,猜想它还可能具有哪些特殊性质。并能证明你的猜想吗?
说明与建议:(l)教师要用微笑、点头、赞叹、激励的表情和话语来鼓励学生大胆猜想。(2)学生可能提出以下猜想:∠b=∠c,∠a=∠d,∠a+∠b=,∠c+∠d=,是轴对称图形等等。教师要引导学生关注等腰梯形特有的性质---等腰梯形的底角相等。(3)如何证明这个猜想,可让学生自己思考、探索、交流,教师给以引导,鼓励证明多样化,如课本第174页的证法。教师可提醒学生证明过程中用到了"夹在平行线间的平行线段相等"这一性质。并指出:这种证法的实质是把一腰平移,从而构造出等腰三角形;对于如图4.9-2(作ae⊥bc,df⊥bc)所示的证法,教师可指出:通过作梯形的两条高,可以构造出两个全等的直三角形等。
问题4:如何证明{chayi5.com}等腰梯形是轴对称图形呢?(说明与建议:可让学生用折纸的方法,确认等腰梯形是轴对称图形;教学中,还可引导学生借助等腰三角形的轴对称性加以证明,如图4.9-3,延长等腰梯形两腰ba、cd相交于点e,易证△aed和△ebc都是等腰三角形。ef⊥bc,则ef⊥ad,ef所在的直线是两个等腰三角形ead、ebc的对称轴。由轴对称图形可知,也是等腰梯形abcd的对称轴。因此,等腰梯形是轴对称图形,有一条对称轴,是过两底中点的直线。)
例题解析(课本例1)说明:本例的结论,为学生在讨论"问题3"时已提及,则可由学生自已完成证明,并概括成为一个文字命题。如学生讨论问题3时未提及,则可由教师引导学生猜想,然后再完成证明。
课堂练习1.课本例1后练习第3题。2.如图4.9-4,已知等腰梯形abcd的腰长为5cm,上、下底长分别是6cm和12cm,求梯形的面积。(方法一,过点c作ce∥ad,再作等腰三角形bce的高cf,可知cf=4cm。然后用梯形面积公式求解;方法二,过点c和d分别作高cf、dg,可知,从而在rt△agd中求出高dg=4cm。)
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题.
2.进一步加深性质定
...