人教版数学八上教案优质7篇

时间:2025-08-09 作者:couple 教学文档

现在教案的质量反映了教师的专业水平,直接影响学生的学习体验,依据不同课型调整结构与侧重点,是教案设计的适应性体现,​,品读360小编今天就为您带来了人教版数学八上教案优质7篇,相信一定会对你有所帮助。

人教版数学八上教案优质7篇

人教版数学八上教案篇1

单元教学内容

1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系

引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念

2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

(1)数轴能反映出数形之间的对应关系

(2)数轴能反映数的性质、

(3)数轴能解释数的某些概念,如相反数、绝对值、近似数

(4)数轴可使有理数大小的比较形象化

3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分

4、正确理解绝对值的概念是难点

根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

(1)任何有理数都有唯一的绝对值

(2)有理数的绝对值是一个非负数,即最小的绝对值是零

(3)两个互为相反数的`绝对值相等,即│a│=│-a│

(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a

(5)若│a│=│b│,则a=b,或a=-b或a=b=0

三维目标

1、知识与技能

(1)了解正数、负数的实际意义,会判断一个数是正数还是负数

(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解

(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值

(4)会利用数轴和绝对值比较有理数的大小

2、过程与方法

经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法

3、情感态度与价值观

使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语??

重、难点与关键

1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值

2、难点:准确理解负数、绝对值等概念

3、关键:正确理解负数的意义和绝对值的意义

课时划分

1、1 正数和负数 2课时

1、2 有理数 5课时

1、3 有理数的加减法 4课时

1、4 有理数的乘除法 5课时

1、5 有理数的乘方 4课时

第一章有理数(复习) 2课时

1、1正数和负数

第一课时

三维目标

一、知识与技能

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量

二、过程与方法

借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性

三、情感态度与价值观

培养学生积极思考,合作交流的意识和能力

教学重、难点与关键

1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2、难点:正确理解负数的概念。

3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

教具准备

投影仪、

教学过程

四、课堂引入

我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、

五、讲授新课

(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数

(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量。

(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。

(6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。

(7)、 你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量

六、巩固练

课本第3页,练习1、2、3、4题

人教版数学八上教案篇2

教学内容:

教材p28~29页例1及相应的做一做和练习七的第1~3小题。

教学目标:

1、知识与技能:联系生活中的具体物体,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的一些基本特征,并初步知道对称轴。

2、过程与方法:能根据轴对称图形的特征,在一组图形中,识别出轴对称图形。

3、情感态度与价值观:在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,体会学习数学的乐趣。

教学重点:

认识轴对称图形的基本特征,准确判断生活中哪些物体是轴对称图形。

教学难点:

能够找出轴对称图形的对称轴。

教学方法:

观察、讨论法。

教学准备:

多媒体课件、白纸、剪刀等。

教学过程:

一、创设情境,引入新知。

1、同学们,生活中有很多有趣的现象,只要你有一双善于发现的眼睛,就能发现许多的知识。请同学们仔细观察p28页的这幅图,你能从图中发现哪些有趣现象?

2、(学生自由回答)

3、(出示第28页的图)是啊,在游乐场里,空中飞舞着的蜻蜓风筝、蝴蝶风筝多漂亮呀,仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴含着这节课我们要学习的知识对称。【板书:对称】这节课我们就一起来探索跟对称有关的知识。

二、探索新知。

(一)认真观察,体验对称。

1、观察图形,发现特点。

(1)看书第29页的树叶、蝴蝶、天安门的图,这些图形它们在外形上都有一个共同的数学特点,你能发现吗?

(2)引导学生从形状、花纹、大小、图案上观察。

(3)学生汇报交流自己的发现。

树叶图:以树叶中间叶脉所在的'直线为界,左右两边的形状和大小都是相同的。

蝴蝶图:以蝴蝶中间所在的直线为界,左右两边的形状和大小都是相同的。

...
《人教版数学八上教案优质7篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档